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Abstract

Background: Next-generation sequencing allows the analysis of an unprecedented number of viral sequence
variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance
and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error
identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and
assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained
using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers,
position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and
should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing.

Results: In this paper, we present two new efficient error correction algorithms optimized for viral amplicons:
(i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a
previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24
experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show
similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in
removing false haplotypes and estimating the frequency of true ones.

Conclusions: Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained
by 454-sequencing of amplicons from heterogeneous viruses.
The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/
NGS/?q=content/pyrosequencing-error-correction-algorithm

Background
Recent advances in the next-generation sequencing
(NGS) methods allow for analyzing the unprecedented
number of viral variants from infected patients and pre-
sent a novel opportunity for understanding viral evolu-
tion, drug resistance and immune escape [1,2]. However,
the increase in quantity of data had a detrimental effect
on quality of reads. In the case of 454 GS-FLX titanium
pyrosequencing, the mean error rate is 1.07% and the

error-free haplotypes represent 10.09% - 67.57% of the
total number of reads, depending on the read length [3].
Originally, the emphasis was on obtaining the consensus
sequence, provided that the depth of coverage easily
allowed for retrieving the main true sequence and its
most common polymorphisms irrespective of the subop-
timal quality of numerous individual reads. However,
analysis of viral amplicons is usually applied to biologi-
cal tasks requiring in-depth characterization of viral
populations and entails the examination of individual
error-free reads rather than consensus sequences.
The main purpose of an error correction algorithm for

viral amplicons is to discriminate between artifacts and
actual sequences. This task becomes especially challenging
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when applied to recognizing and preserving low-frequency
natural variants in viral population. Currently, the most
used error correction algorithms involve the clustering of
reads [2,4,5]. PyroNoise clusters the flowgrams using a dis-
tance measure that models sequencing noise [4], whereas
SHORAH clusters the reads in Bayesian fashion using the
Dirichlet process mixture [5,6]. Other approaches to error
correction are based on the use of multiple sequence
alignments [7] and k-mers, or substrings of reads of a
fixed length k [8-10]. K-mer based algorithms are efficient
but rather time and memory consuming. Additionally,
these algorithms are prone to introduction of errors dur-
ing the correction phase [5]. To overcome these disadvan-
tages, the authors of EDAR algorithm [11] developed an
approach for the detection and deletion of sequence
regions containing errors. However, although this error
deletion approach is efficient for shotgun sequencing, it is
unacceptable for treatment of short amplicon reads com-
monly analyzed in viral samples due to their lower k-mer
diversity.
The aforementioned methods are optimized for shot-

gun analysis and assume that the errors introduced by
sequencing are randomly distributed. However, a recent
assessment of the accuracy and quality of amplicon reads
obtained using 454-sequencing showed that the error
rate is not randomly distributed; rather, it is strongly
affected by the presence of homopolymers, position in
the sequence, size of the sequence and spatial localization
in PT plates [3]. These findings indicate that many of
these sequencing errors are sequence specific and may
variably contribute to accuracy of reads generated from
amplicons of different sequences. More importantly, the
accuracy of amplicon sequencing should be improved by
incorporating the factors affecting the error rate into cali-
bration of the error correction algorithms.
In this paper, we present two new efficient error correc-

tion algorithms optimized for viral amplicons. The first
algorithm (ET) includes a calibration step using sequence
reads from single-clone samples. ET estimates an empirical
frequency threshold for indels and haplotypes calculated
from experimentally obtained clonal sequences, and also
corrects homopolymer errors using sequence alignment.
The second algorithm (KEC) does not need a calibration. It
is based on the k-mer error correction. KEC optimizes the
EDAR algorithm [11] for the detection of error regions in
amplicons and adds a novel algorithm for error correction.
Performance of both algorithms was compared to the clus-
tering algorithm SHORAH using 24 experimental ampli-
con datasets obtained by 454- sequencing.

Methods
Experimental sequence samples
A set of 10 plasmid clones with different HCV HVR1
sequences was obtained. All the clones contained the

modified HCV JFH1 sequence (GenBank accession
number AB047639.1). Each of 10 HVR1 sequences was
introduced into plasmid pJFH1 by two-step recombinant
PCR using oligonucleotides encoding different HVR1
sequences, followed by digestion with a set of restriction
endonuclease and ligation. Plasmids were then electropo-
rated into E. coli and purified with the QIAGEN miniprep
kit. All constructs were verified by DNA sequencing (Big-
Dye v3.1 chemistry sequencing kit - Applied Biosystems,
Foster City, CA) using an automated sequencer (3130xl
Genetic Analyzer, Applied Biosystems). The average num-
ber of nucleotide differences among the 10 plasmid clones
was 41.36 (minimum of 24 and maximum of 59).
A total of 24 samples of the plasmids were created, with

14 containing a single clone and 10 containing a mixture
of clones in different concentrations (see Table 1). The
junction E1/E2 region (309 nt) was amplified using a
nested PCR protocol [12]. Briefly, all samples were ampli-
fied using the PerfeCTa SYBR FastMix chemistry (Quanta
BioSciences, Gaithersburg, MD) and a set of external pri-
mers. The amplicons generated during the first round
PCR were used as templates for a nested PCR using hybrid
primer composed of the 454 primer adaptors, multiple
identifiers and specific sequences complementary to the

Table 1 Relative concentrations of the 10 clones in each
sample and the number of raw reads obtained in the 454
experiment.

1 2 3 4 5 6 7 8 9 10 N reads

S1 100 0 0 0 0 0 0 0 0 0 12096

S2 100 0 0 0 0 0 0 0 0 0 11134

S3 0 100 0 0 0 0 0 0 0 0 13183

S4 0 0 100 0 0 0 0 0 0 0 12080

S5 0 0 0 100 0 0 0 0 0 0 15507

S6 0 0 0 0 100 0 0 0 0 0 9643

S7 0 0 0 0 0 100 0 0 0 0 16215

S8 0 0 0 0 0 0 100 0 0 0 10583

S9 0 0 0 0 0 0 0 100 0 0 29101

S10 0 0 0 0 0 0 0 0 100 0 24230

S11 0 0 0 0 0 0 0 0 0 100 20560

S12 0 0 0 0 0 0 0 0 0 100 19133

S13 0 0 0 0 0 0 0 0 100 0 16542

S14 0 0 0 0 0 0 0 100 0 0 23629

M1 2.9 2.9 2.9 2.9 2.9 2.9 2.9 80.0 0 0 21168

M2 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 0 0 17577

M3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 30.0 0 0 18482

M4 10.0 10.0 10.0 10.0 10.0 10.0 20.0 20.0 0 0 18722

M5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 93.0 0 0 24519

M6 0.0 8.7 8.7 8.7 8.7 21.7 21.7 21.7 0 0 11561

M7 5.0 5.0 5.0 5.0 5.0 5.0 20.0 50.0 0 0 20931

M8 3.1 3.1 3.1 3.1 3.1 0.0 42.3 42.3 0 0 18733

M9 80.0 2.9 2.9 2.9 2.9 2.9 2.9 2.9 0 0 18007

M10 2.0 2.0 2.0 2.0 0.0 30.6 30.6 30.6 0 0 20677
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HCV genome. This allowed for multiplexing and down-
stream pyrosequencing procedure. Resulting amplicons
were quantified using the Picogreen kit (Invitrogen, Carls-
bad, CA). Integrity of each fragment was evaluated using
Bioanalyzer 2100 (Agilent, Santa Clara, CA). PCR products
were pooled and subjected to pyrosequencing using
the GS FLX Titanium Series Amplicon kit in a 454/Roche
GS FLX instrument. Sequencing of the reverse strand
was conducted using the amp primer B. The initial reads
were processed by matching to the corresponding identi-
fier. Low quality reads were removed using the GS
Run Processor v2.3 (Roche, 2010). The 454 run was
divided in 4 sectors, two of which were used in the current
experiment, one sector with a pool of the MID-separated
single-clone samples and one sector with a pool of the
MID-separated mixture samples (Table 1).

ET algorithm
The main purpose of the procedure is to calculate the
frequency of erroneous haplotypes in amplicon samples
where a single haplotype is expected. The calculation of
an accurate threshold is dependent on high-quality pair-
wise sequence alignments and proper correction of
homopolymers. The procedure was carried out with
matlab [13] and involved the following steps:
(1) Amplicon size limits: All reads smaller than 90% of

the expected amplicon length are deleted and all reads
bigger than 110% of the expected amplicon length are
clipped. All different haplotypes and their frequencies
are calculated, which saves considerable time and mem-
ory at the following steps.
(2) Alignment to external references: Each haplotype

is aligned against a set of external references of all
known genotypes. For each haplotype the best match of
the external set is chosen. The aligned sequence is
clipped to the size of the chosen external reference.
(3) Alignment to internal references: The 20 most fre-

quent haplotypes that do not create insertions or deletions
in regard to the external reference are selected as the
internal reference set. Each haplotype in the dataset is
aligned against each member of internal references set.
For each haplotype the best match of the internal set is
chosen.
(3) Homopolymer correction: All homopolymers of 3

or more nucleotides are identified. If the homopolymer
region includes an insertion, the nucleotide is removed.
If the homopolymer includes a deletion, the gap is
replaced by the missing nucleotide. Then all different
haplotypes and their frequencies are recalculated.
(4) Outlier removal: All reads containing obvious PCR

or sequencing artifacts are removed. Using the internal
reference, the number of indels in each haplotype is
found. An outlier threshold is defined for each file, cal-
culated as the weighted average of the number of indels

+ 4 standard deviations. If a haplotype contains a num-
ber of indels higher than the outlier threshold, the
haplotype is removed.
(5) Indel threshold: The read aligned to its reference is

used to calculate the frequency of erroneous indels over
all the 14 samples containing a single clone. An indel
threshold is defined as the maximum frequency of erro-
neous indels (5.9%). If a haplotype contains an indel
with a frequency lower than the indel threshold, the
haplotype is removed.
(6) Haplotype error threshold: The frequency of erro-

neous haplotypes and its standard deviation is calculated
over the 14 samples containing a single clone. A haplotype
threshold was defined as the weighted average frequency
of erroneous haplotypes + 9 standard deviations (0.40%).
All haplotypes with a frequency lower than the haplotype
threshold are removed.
(7) Removal of reads with Ns: All haplotypes with Ns

are removed from the final file. This step was performed
at the end rather than at the beginning to take advan-
tage of the information that these reads provided
regarding nucleotide frequencies at positions other than
those with N.

KEC algorithm
The scheme of KEC includes 4 steps:

(1) Calculate k-mers s and their frequencies kc(s) (k-
counts). We assume that k-mers with high k-counts
("solid” k-mers) are correct, while k-mers with low
k-counts ("weak” k-mers) contain errors.
(2) Determine the threshold k-count (error thresh-
old), which distinguishes solid k-mers from weak k-
mers.
(3) Find error regions. The error region of the read
is the segment [i, j] such that for every p Î [i, j] the
k-mer starting at the position p is considered weak.
(4) Correct the errors in error regions.
Let r = (r1, ..., rn), riÎ{A, T, G, C} be the fixed read.
Denote by Sk(i) the k-mer of r starting at the posi-
tion i and by KCk(i) the k-count of this k-mer. For
an arbitrary sequence s let prefj (s) be the prefix of
length j of s.

(1) Calculating k-mers and k-counts
The unique reads r were stored together with their fre-
quencies fr. The straightforward calculation of k-mers
and k-counts is inefficient due to the usually large size
of the data set. We use hash map, where each key is a
k-mer s and the corresponding value is the array v(s) =
((r, i): s = Sk(i) in the read r). The hash map can be
rapidly constructed even for very large data sets.
(2) Finding the error threshold
The idea proposed in [8,9,11] is used to find the error
threshold. Consider the distribution of frequencies of
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k-count values. Let f(v) be the frequency of the k-count
value v. It is assumed, that k-counts of erroneous k-mers
and correct k-mers follow different distributions (in [11] –
the exponential distribution and the series of Poisson
models, in [8]– Poisson distribution and Gaussian distri-
bution, respectively). It was observed in [8,11], that it is
not necessary to explicitly consider the model for the dis-
tribution, because the first minimum of f(v) satisfactorily
separates different distributions, and therefore can be used
as the error threshold. However, this approach often is not
applicable to the amplicon data, because of the rather dis-
crete distribution of k-count values than in the shotgun
experiments. The first minimum of f(v) is usually equal to
0 and corresponds to the gap in the distribution (i.e. to the
first k-count value, for which there is no corresponding
k-mers). We define the end of the first sufficiently long
segment of the consecutive 0’s of f(v) as the error thresh-
old ter. The length of the segment is the parameter of the
algorithm.
(3) Finding error regions
The error regions in every read are calculated as follows.
We first sequentially find isolated segments [i, j] such
that for every p Î [i, j] KCk(p) ≤ ter. Then the k-mers of
the read are clustered according to their k-counts using
clustering by the variable bandwidth mean-shift method
[14,15], as was proposed in [11]. We use the fast imple-
mentation FAMS [16] of the variable bandwidth mean-
shift method. Finally, every segment is extended in both
directions by adding consecutive positions q by the fol-
lowing rule: q is added if and only if there exists p Î [i, j]
such, that k-mers Sk(p) and Sk(q) belong to the same
cluster. Overlapping segments are joined, and the
obtained segments are error regions.
(4) Error correction
This stage consists of 3 steps:
(4a) Error correction in “short” error regions (with

lengths not exceeding k).
(4b) Error correction in “long” error regions (with

lengths greater than k).
(4c) Haplotypes reconstruction and postprocessing.
Steps (4a) and (4b) could be used for any sequencing

data and could be considered as the separate algorithm.
Stage (4c) is designed for amplicon data.
(4a) Error correction in “short” error regions (4a) is
based on the following principle: correct the error in the
read r by finding the minimum-size set of insertions,
deletions and replacements, which transform the r into
read with all k-mers being solid. This problem could be
precisely solved by the dynamic programming [17], but
this approach has two disadvantages: it is slow and the
additional errors could be introduced. However, taking
into account the homopolymer nature of errors and
using the found error regions, the efficient and fast heur-
istics for the problem can be proposed.

We call error region x = [b, e] of a read r = (r1, ..., rn)
a tail, if either b = 1 or e = n-k+1. Let l(x) be the length
of x, and hi(w) denotes a sequence of i identical nucleo-
tides wÎ{A, T, G, C} (for i ≥ 2 hi(w) is a homopolymer).
Let us introduce the following notation for different

types of single-nucleotide errors: Rep denotes replace-
ment; Ins1 – insertion, which does not create a homo-
polymer; Insp, p ≥ 2, – insertion, which creates a
homopolymer of length p; Del0 – deletion of an isolated
nucleotide; Delm – deletion from the homopolymer of
length m+1, m ≥ 1. The straightforward verification
shows, that the following proposition holds:
Lemma 1. Suppose, that the non-tail error region x =

[b, e] of the read r was caused by a one-nucleotide error
E. Let w = re.

1) If E = Rep, then l(x) = k.
2) If E = Insp, 1 ≤ p ≤ k, then l(x) = k-p+1 and if p ≥
2, then x is followed by hp-1(w).
3) If E = Delm, 0 ≤ m ≤ k, then l(x) = k-m-1 and if
m ≥ 1, then x is followed by hm(c), where c≠w.

According to Lemma 1, errors corresponding to non-
tail error regions with lengths ≤ k could be identified
and corrected. If the error region x = [b, e] of a read r =
(r1, ..., rn) is a tail, then we delete from the read the suf-
fix starting at the position b+k-1 (if e = n-k+1) or the
prefix ending in the position e (if b = 0). This is the tail
cutting operation. So, the basic scheme of the first stage
of the error correction algorithm is the following.
Algorithm 1.

1) Consider every non-tail error region x = [b, e]
with length not exceeding k of every read r = (r1, ...,
rn). We assume, that x was caused by single isolated
error at the position e. Taking into account the
length of x and the sequence of nucleotides follow-
ing it, identify the type of error using Lemma 1. If l
(x) < k-1, then the type of error and its correction
can be determined unambiguously. In the case of
insertion remove re; in the case of deletion duplicate
re, if it will introduce a solid k-mer. According to
Lemma 1 the cases l(x) = k and l(x) = k-1 contains
ambiguities. If l(x) = k, then x could be caused either
by nucleotide replacement with 3 possible correc-
tions or by simple nucleotide insertion. If l(x) = k-1
and re = re+1, then x could be caused either by the
insertion of the nucleotide re or by the deletion of
the nucleotide c≠re between re and re+1. Consider all
possible corrections of the error and choose the cor-
rection, which introduce solid k-mer with the high-
est k-count.
2) Cut tails, delete short reads, recalculate k-mers
and error regions, delete reads covered for more
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than 40% with error regions. Storing k-mers in the
hash map allows to perform both steps 1) and 2)
very fast.
3) Repeat steps 1) and 2) until there are no error
regions in the data set or the fixed number of itera-
tions is reached.

Algorithm 1 is heuristic. It assumes that errors in two
consecutive nucleotides are extremely unlikely. There are
elements of greedy strategy at different stages of the algo-
rithm. Nevertheless, the disadvantages of greedy algo-
rithms are less detrimental in real data. For example,
during the consideration of error regions with lengths k
and finding the possible replacement of the nucleotide re,
the existence of several different strong k-mers s with
prefk-1(s) = (rb, ..., re-1) (*) is possible. To find the replace-
ment of re Algorithm 1 will choose s with highest k-count,
which is a greedy approach. However, the tests of Algo-
rithm 1 on the selection of 24 different data sets with
HCV sequencing data shows, that for the overwhelming
majority of error regions of length k the strong k-mer s
satisfying (*) is unique. The percentage of such error
regions varies from 86 to 99.9% with average of 95.9%.
(4b) Error correction in “long” error regions The error
regions with lengths greater than k likely correspond to
the situations when two or more errors are separated by
less than k positions. This situation is significantly less
probable than the presence of a single error. In Figure 1
the typical distribution of error regions lengths frequen-
cies is illustrated. The number of “long” error regions is

regulated by the parameter k. It should not be too small
in order to obtain the more accurate boundary between
strong and weak k-mers, and at the same time it should
not be too large in order to better separate errors from
each other. In our tests we used k = 25.
However, a certain number of “long” error regions is

inevitable. We can locate the possible error bases for
the error region x = [b, e], len(x) > k - it is the positions
b+k-1 and e. However, for such error regions we lose
the opportunity for prediction of the error type by com-
bining their length and nucleotide sequence following it,
because the length of error regions corresponding to the
individual errors could not be determined.
There two ways to treat “long” error regions. One is to

discard all reads with errors uncorrected by Algorithm 1.
In this case, the error threshold and error regions are
recalculated after finishing Algorithm 1, and reads con-
taining error regions are discarded. The other way is to
correct errors in “long” error regions. All possible errors at
positions b+k-1 and e are considered to choose the correc-
tion procedure causing the introduction of k-mer with the
highest k-count. Since these corrections are less reliable
than for “short” error regions, correction of “long” error
regions is conducted at the end of the algorithm after cor-
recting “short” error regions, and Algorithm 1 is applied
again before generating the final output of corrected reads.
Both approaches are implemented in KEC, allowing users
to exercise their preferences.
(4c) Haplotypes reconstruction and postprocessing In
the error-free data set of amplicon reads the collection of

Figure 1 Frequency distribution of error-region lengths in a sample of amplicon sequences (dataset M1, k = 25).
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unique reads should be identical to the set of haplotypes,
and the frequencies of unique reads should be propor-
tional to the concentrations of haplotypes. Errors result
in the increasing number of unique reads and divergence
between the frequencies and concentrations.
The steps (4a) and (4b) dramatically reduce the numbers

of unique reads in the data set. The corresponding statis-
tics is presented in Table 2 for the data sets M1-M10.
A set of corrected reads usually contains many error-free
reads, which are subsequences of real haplotypes.
Although such reads are not useful for finding true haplo-
types, they are important for identifying haplotype fre-
quencies. Therefore, the row “after (4a), (4b)” in Table 2
presents the number of unique reads and unique maximal
reads (here and further by maximal reads we mean reads
which are not subsequences of another reads).
As illustrated in Table 2, some errors persist in the

dataset after steps (4a), (4b). The small number of
unique reads allows for using pairwise and multiple
alignments to correct these errors. This idea is imple-
mented in the following heuristic algorithm.
Let R = {r1, ..., rn} be a set of unique reads obtained

after steps (4a),(4b), (f1, ..., fn) be the frequencies of
these reads and Rmax ⊆ R be a set of maximal reads of
R. Let ai, j = 1, if the read rj is a subsequence of the
read ri, and ai, j = 0, otherwise, i, j = 1, ..., n (by the defi-
nition ai, i = 1). Let also dj be the number of reads,
which contain rj as the subsequence. The basic scheme
of the error correction and haplotypes reconstruction
algorithm is the following.
Algorithm 2.

1) For every riÎR set its initial concentration
ci := fi/

∑n
i=1 fi

2) Calculate set Rmax. For every riÎRmax recalculate
its concentration by the following formula:

ci :=
∑n

j=1 ai,j
cj

dj

3) Calculate the multiple alignment of reads of Rmax.
Identify homopolymer regions in the alignment. For
every position of each homopolymer region calculate
the total concentrations of reads with and without
gap at this position. If both of these concentrations
are non-zero and one of them is a times greater
than the other, correct the position accordingly.
4) Put R: = Rmax and repeat 1) and 2). Calculate
neighbor joining tree T of reads from Rmax based on

their pairwise alignment score. Let P be the set of
pairs of reads having common parents in T. For
every (ri, rj) ÎP consider pairwise alignment of ri
and rj. Identify homopolymer regions as in 3). Cor-
rect the position of the homopolymer region if and
only if either the nucleotide difference between ri
and rj is 1 or their concentrations differ more than
a times.
5) Put R: = Rmax and repeat 1)-4) until no correc-
tions can be made.

For the datasets described in this paper, a = 30 was
used. ClustalW [18] was used for calculation of align-
ments and neighbor joining trees.

Algorithm comparison
ET was implemented in Matlab and KEC in JAVA. Each
sequence file was analyzed using ET, KEC and
SHORAH error correction algorithms. SHORAH was
applied several times using different parameters and the
best attained results are reported here.
To evaluate performance of the three algorithms,

nucleotide identity and frequency of the observed and
expected true haplotypes were compared. Before doing
this, the outputs of the three algorithms were post-pro-
cessed to assure a fair comparison. The true haplotypes
expected in each sample were aligned with the observed
haplotypes using Needleman-Wunsch global alignment.
The true haplotype with the best score was considered
to be the match for each haplotype and the gapped ends
were clipped in both sequences. For each method and
sample, the following measures were calculated: (i)
Missing true haplotypes, the number of expected haplo-
types which were not found among the observed haplo-
types; (ii) False haplotypes, the number of observed
haplotypes with indels or nucleotide substitutions; (iii)
Root mean square error, the disparity between the
expected and observed frequencies of haplotypes; (iv)
Average hamming distance, the distance between an
observed false haplotype and its closest match, averaged
over all false haplotypes.

Results
Error profile of single-clone samples
The errors in reads of every single-clone sample were
calculated by aligning each read with the corresponding
clone sequence. The average percentage of error-free

Table 2 Number of reads in the datasets before and after steps (4a), (4b)

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Before (4a), (4b) 4220 4222 4418 4344 4426 3118 4661 4223 3986 4839

After (4a), (4b) 306/8 502/18 385/8 483/9 179/2 390/14 409/8 367/8 394/11 418/12
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reads (true sequence) in the single-clone samples was
54.02% (Figure 2). The most common false haplotype
was found with an average frequency of 4.96% but could
be as high as 25.85% (homopolymer error in sample S4).
A minimum spanning tree (Figure 3) of a distance

graph Gdist of the dataset S6 illustrates the degree of
sequence errors generated during 454-sequencing. This
tree shows sequence relatedness of all unique haplotypes
observed among the 454-reads of a single-clone sample.
Gdist is a complete weighted graph, the vertices of Gdist

are unique haplotypes, the weight of each edge h1h2 is
the edit distance between h1 and h2. Most errors are
found in low frequency haplotypes but homopolymer
errors are usually found in high-frequency haplotypes.
Figure 4 shows the average number of errors per read,

separating them according to their nature: nucleotide
replacements, indels in homopolymers (deletion in a
homopolymer or insertion which creates a homopoly-
mer) and non-homopolymer indels. Most errors are
insertions and deletions, 54.99% of which are located in
homopolymers.
Although the total number of nucleotide errors is

high, they occur in different positions, making the fre-
quency of individual reads with a particular error very
low. The case with homopolymers errors is different,
the longer a homopolymer is, the higher its fraction of
errors (Figure 5). Small homopolymers (1 to 3) have
high prevalence but low fraction of errors, whereas big

homopolymers (4 to 7) have low prevalence but high
fraction of errors.

Algorithms comparison
Table 3 shows performance comparison of 3 algorithms
applied to the experimental single-clone and mixture
samples. Several modifications of the SHORAH para-
meters were used and the best results for this algorithm
are shown in Table 3 (with SHORAH clustering hyper
parameter equal to 0.1). Since SHORAH was presenting
many false haplotypes, we attempted to improve its per-
formance by using a frequency threshold, leaving only
haplotypes with a frequency higher than 1%.
All methods found the correct sequence in each sin-

gle-clone sample (Figure 6). When mixtures were tested,
all three algorithms were successful in identifying most
of the true haplotypes, with ET being the most sensitive.
The major difference among algorithms is in the
reported number of false haplotypes. ET and KEC
reported a lower number of false haplotypes than
SHORAH in every mixed sample (Figure 7).
The low Root mean square error (RMSE) between

observed and expected frequencies of true haplotypes indi-
cates that ET and KEC have a greater accuracy than
SHORAH in single-clone samples. All three algorithms
show equivalent results in the mixture samples (Figure 8).
SHORAH is less accurate in identifying haplotype fre-
quency owing to the large number of reported false

Figure 2 Frequency of the true haplotype in single-clone samples. Red bars show the percentage of all reads with the true haplotype and
green bars show the frequency of the most common false haplotype.
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haplotypes, presence of which reduces the observed fre-
quency of the true haplotypes.
Analysis of the Hamming distance between false hap-

lotypes and their closest match shows that false haplo-
types retained by KEC and ET are genetically closer to
true haplotypes than the ones retained by SHORAH
(Figure 9).
The test results of all samples are summarized in

Table 3.

Discussion
Hepatitis C virus (HCV) is a single-stranded RNA virus
belonging to the Flaviviridae family [19]. HCV infects
2.2% of the world’s population and is a major cause of
liver disease worldwide [20]. HCV is genetically very
heterogeneous and classified into 6 genotypes and
numerous subgenotypes [21]. The most studied HCV
region is the hypervariable region 1 (HVR1) located at
amino acid (aa) positions 384-410 in the structural

Figure 3 Minimum spanning tree of single-clone sample S6. Each node is a unique haplotype. The diameter of the node is proportional to
the square root of its frequency. The true haplotype is shown in red, haplotypes with indel errors only are shown in yellow, haplotypes with
nucleotide substitutions only are shown in blue and haplotypes with both types of errors are shown in green.
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Figure 4 Error profile of single-clone samples. Three types of errors are shown: nucleotide replacements, non-homopolymer indels and indels
in homopolymer.

Figure 5 Homopolymer indels distribution according to size. (for the notation convenience we consider single nucleotides as
homopolymers of length 1, so homopolymer indel in the homopolymer of length 1 is the insertion creating a homopolymer of length 2).
Average homopolymer statistics over all 14 samples. The blue bars (left y-axis) show the number of homopolymer indels per read. The red line
(left y-axis) shows the fraction of expected homopolymers of that size that contain errors. The green line (right y-axis) shows the percentage of
homopolymers of that size that can be found in the real sequence.

Skums et al. BMC Bioinformatics 2012, 13(Suppl 10):S6
http://www.biomedcentral.com/1471-2105-13-S10-S6

Page 9 of 13



Table 3 Test results of the single-clone (S) and mixture (M) samples.

ET KEC SHORAH_all SHORAH_1%

MT FS RMSE HD MT FS RMSE HD MT FS RMSE HD MT FS RMSE HD

S1 0 0 0.00 0.00 0 2 1.64 2.50 0 351 29.02 4.83 0 3 19.19 2.00

S2 0 0 0.00 0.00 0 0 0.00 0.00 0 269 30.12 4.44 0 3 21.70 1.00

S3 0 1 1.04 1.00 0 0 0.00 0.00 0 292 23.44 5.31 0 2 14.94 1.00

S4 0 1 0.96 2.00 0 0 0.00 0.00 0 271 44.68 5.37 0 1 37.87 1.00

S5 0 0 0.00 0.00 0 0 0.00 0.00 0 319 9.63 4.47 0 0 0.00 0.00

S6 0 1 0.70 2.00 0 0 0.00 0.00 0 194 18.70 3.90 0 3 12.03 1.00

S7 0 0 0.00 0.00 0 0 0.00 0.00 0 496 21.52 6.70 0 4 9.13 8.50

S8 0 0 0.00 0.00 0 0 0.00 0.00 0 262 14.37 4.58 0 1 3.16 1.00

S9 0 0 0.00 0.00 0 0 0.00 0.00 0 183 6.23 6.97 0 0 0.00 0.00

S10 0 0 0.00 0.00 0 0 0.00 0.00 0 288 7.77 5.11 0 0 0.00 0.00

S11 0 0 0.00 0.00 0 0 0.00 0.00 0 717 24.71 5.03 0 3 9.41 1.00

S12 0 1 0.65 2.00 0 0 0.00 0.00 0 611 25.94 5.52 0 4 10.61 1.50

S13 0 0 0.00 0.00 0 0 0.00 0.00 0 156 5.53 4.93 0 0 0.00 0.00

S14 0 0 0.00 0.00 0 0 0.00 0.00 0 161 6.83 6.60 0 0 0.00 0.00

Mean 0.00 0.29 0.24 0.50 0.00 0.14 0.12 0.18 0.00 326.43 19.18 5.27 0.00 1.71 9.86 1.29

M1 0 0 1.26 0.00 0 0 0.78 0.00 0 320 1.23 4.51 0 0 0.76 0.00

M2 0 0 1.50 0.00 0 0 1.95 0.00 0 738 3.70 4.44 0 2 3.47 1.00

M3 0 0 2.87 0.00 0 0 4.22 0.00 0 638 3.65 4.25 0 1 4.42 1.00

M4 0 0 2.12 0.00 0 0 3.09 0.00 0 577 2.88 5.20 0 1 3.08 1.00

M5 0 0 0.29 0.00 7 0 7.00 0.00 0 214 0.91 7.37 7 0 7.00 0.00

M6 0 0 2.45 0.00 0 0 1.81 0.00 0 394 3.25 4.50 0 0 2.57 0.00

M7 0 0 1.04 0.00 0 0 2.42 0.00 0 499 2.04 5.00 0 0 2.95 0.00

M8 0 0 0.40 0.00 0 0 2.25 0.00 0 336 3.30 5.48 0 1 3.22 1.00

M9 0 0 2.40 0.00 0 0 1.53 0.00 0 643 6.56 4.49 1 4 4.02 1.00

M10 0 0 3.70 0.00 0 0 4.16 0.00 1 637 6.13 5.30 1 2 5.73 1.50

Meann 0.00 0.00 1.80 0.00 0.70 0.00 2.92 0.00 0.10 499.60 3.37 5.05 0.90 1.10 3.72 0.65

MT: Missing true haplotypes; FS: False haplotypes; RMSE: root mean square error; HD: Average Hamming distance, averaged over all false haplotypes. SHORAH_all
shows the raw results and SHORAH_1% the results based only on those haplotypes with a frequency > 1%.

Figure 6 Algorithm comparison: the number of missing true haplotypes.
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protein E2. Sequence variation in HVR1 correlates with
neutralization escape and is associated with viral persis-
tence during chronic infection [22-27]. NGS methods
allow for analyzing the unprecedented number of HVR1
sequence variants from infected patients and present a
novel opportunity for understanding HCV evolution,

drug resistance and immune escape [1]. Most current
methods are optimized for shotgun analysis and assume
that the errors are randomly distributed. This assump-
tion does not compromise the accuracy of shotgun
sequencing as much as accuracy of amplicon sequen-
cing. The sequencing error rate for amplicons is not

Figure 7 Algorithm comparison: the number of false haplotypes.

Figure 8 Algorithm comparison: frequency of true haplotypes.

Skums et al. BMC Bioinformatics 2012, 13(Suppl 10):S6
http://www.biomedcentral.com/1471-2105-13-S10-S6

Page 11 of 13



randomly distributed [3] and should vary among ampli-
cons of different primary structure.
In addition, current error-correction algorithms report

performance measures related to their ability of finding
true sequences, rather than the number of false haplo-
types [1,2,4-6]. However, the biological applications of
viral amplicons necessitate the use of error-free indivi-
dual reads. All three methods studied here could find
the correct sequences in both single-clone and mixture
samples but showed marked differences in detecting the
frequencies of the true haplotypes and the number of
false haplotypes. We found that both ET and KEC are
suitable for rapid recovery of high quality haplotypes
from reads obtained by 454-sequencing.
The highly non-random nature of 454-sequencing errors

calls for internal controls tailored to the amplicon of inter-
est. The error distribution of single-clone samples helped
us to calibrate the ET algorithm, thus facilitating its high
accuracy in detection of true sequences in the HVR1
amplicons. ET was successful in finding the correct set of
haplotypes in all 10 mixtures and in 10 of 14 single-clone
samples, while found one false haplotype in 4 single-clone
samples. KEC was correct for 13 of 14 single-clone sam-
ples (with 2 false haplotypes for one sample) and for 9 of
10 mixtures (not being able to find low-frequency clones
in the mixture M5), having also the advantage that it does
not need an experimental calibration step. SHORAH
found all correct haplotypes for all single-clone samples
and for 9 of 10 mixtures, having a very large number of
false haplotypes and a significant divergence of expected

and found frequencies. Introduction of a frequency cutoff
for SHORAH results in loss of true haplotypes. SHORAH
with frequency cutoff 1% was correct for 5 single-clone
samples and for 3 mixtures, having both missing true and
false haplotypes for other samples.
We highly encourage the sequencing of single-clone

samples of the desired amplicon in order to understand
the nature and distribution of the errors and to measure
the performance of the algorithm in this particular
amplicon.
Most algorithms are successful in identifying and

removing low-frequency errors. However, reads with high-
frequency homopolymer errors should not be removed
but rather corrected, allowing for preservation of valuable
data. All three algorithms correct reads with homopoly-
mers in a different way. KEC uses the k-mer distribution
to discern between erroneous and correct k-mers and
then fixes homopolymers using a heuristic algorithm. ET
fixes the homopolymers based on pairwise alignments
with high-quality internal haplotypes. SHORAH clusters
reads with a similar sequence, effectively creating a con-
sensus haplotype. Sample S4 is particularly interesting
because it included a false haplotype with a raw frequency
of 25.85%. This false haplotype contained a deletion in a
long homopolymer (n = 7). Both KEC and ET fixed this
haplotype, but the clustering algorithm SHORAH pre-
served this false haplotype because of its high frequency
and made it a center for the cluster of other reads, achiev-
ing a final frequency of 33.25%. The same situation occurs
in most single-clone samples: in samples S1, S2, S3, S4, S6,

Figure 9 Algorithm comparison: the average Hamming distance between false haplotypes and their true targets.
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S8, S11, S12 the second-frequent haplotypes with frequen-
cies 13.3%, 16.2%, 11.6%, 33.25%, 5.2%, 2.79%, 2.9%, 3.89%,
respectively differs from most frequent haplotype by one
indel in a long homopolymer. The main assumption of
clustering algorithms is that the observed set of reads
represents a statistical sample of the underlying population
and that probabilistic models can be used to assign
observed reads to unobserved haplotypes in the presence
of sequencing errors [5]. However, these algorithms
assume that errors rates are low and randomly distributed,
which is not true for the 454-sequencing of amplicons.
Some homopolymer errors achieve very high frequencies,
making very difficult to separate these false haplotypes
from true ones using a clustering model.

Conclusions
SHORAH, ET and KEC are equally accurate in finding
true haplotypes. However, new algorithms, KEC and ET,
are more efficient than SHORAH in removing false hap-
lotypes and estimating the frequency of true ones. Both
algorithms are highly suitable for rapid recovery of high
quality haplotypes from reads obtained by NGS of ampli-
cons from heterogeneous viruses such as HCV and HIV.
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